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Abstract-This paper reports an experimental data analysis which clearly emphasizes the complex nature 
of the mechanisms governing the mixing of passive scalars such as temperature in fully developed turbulence. 
For that purpose, we compare our measurements of temperature increments and their probability density 
functions (pdfs) to theoretical predictions available in the literature for a scalar field evolving within a fully 
stationary d.eveloped dynamical turbulent field. The observed disagreements lead us to propose some 
improvements of the existing models. This, in fact, underlines the evolution through the scales of turbulence 
of the statistics of temperature increments, whose coupling with the velocity field appears to be an essential 

feature of the mixing process. 0 1998 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

The intermittent nature of small scales in fully 
developed turbulence has already been investigated 
quite widely over the last few decades. One of the 
main properties inferred from these investigations is 
that the small-scale velocity sU(r) = U(x+r) - U(x), 
or temperature St?(v) increments statistics, are very 
far from Gaussianity. Over the last 30 years, a large 
amount of work has been devoted either exper- 
imentally, theoretically or numerically, to the study of 
the impact of the energy transfer rate fluctuations 
upon the global statistical properties of turbulence. 
These works [l&4] have tried to establish the evol- 
ution, as a function of the order p, of the exponents 
of the power laws of high-order moments of 6 U(r) or 
M(r), and to compare this evolution with theoretical 
predictions. Most of these theories are based on 
phenomenological ideas that describe the breaking 
of eddies in smaller eddies and quantify the energy 
distribution at each step of the cascade. Among these 
models, the more realistic ones are founded on log- 
normal probabiliiy [S], on fractality or multifractality 
[6, 71 or on more refined statistics [S, 91, but for a few 
years several studies have directly tried to predict the 
evolution of the pdfs through the scales of turbulence. 
In this framework, some studies [lo, 1 l] have char- 
acterized quite precisely the pdfs of the velocity 
increments SU, with special care of the behavior of 
their wings. Nevertheless, due to peculiar math- 
ematical properties, and also to recent efforts and 
progress in combustion modelling [12], the most 
promising effects now concern the scalar field stat- 
istical properties [13]. For instance, an exact result, 
which gives the shape of the pdf of a scalar field mixed 
in a stationary process, has recently been established 

[ 141. More recently, Vaienti et al. [ 151 have developed 
a theory that leads to a partial differential equation 
for the evolution of the pdf of temperature increments, 
through the scales r of turbulence. In a similar way, 
Valino et al. [16] obtained an exact equation that 
predicts the shapes of the pdfs of a passive scalar as a 
function of the flatness coefficient of its distribution. 
This work will be referred to as VDR in the following. 
It is in this framework that we propose the present 
study, which deals with an extension of the results of 
the VDR model to temperature increments. 

First, we will recall the main results from this VDR 
model, then we will present the experimental con- 
ditions of our study. Finally, we will compare the 
experimental shapes of the temperature increments 
pdfs with those obtained by VDR and with a new 
extended model that we propose. 

2. MODELLING THE PROBABILITY DENSITY 
FUNCTION 

The model developed by VDR is originated from 
the following equations (la) and (1 b) [ 121 which 
describe the time evolution of the pdf of a scalar 0 
advected by homogeneous and isotropic turbulence. 

dP 
-= 
at - & [(R+ExX)Pl 

with R(x, t) = (JcV’XIX = x> (lab) 

dP _= _- 
at lx & (QP) + &xxP 

I 

with Q(x, t) = (rc(VX)‘]X = x) (2a,b) 

where Ed = IC( (VX)‘) is the mean dissipation rate and 
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ax> 
R(x) 
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NOMENCLATURE 

normalization condition of P(x) Y 
variable linked to F by C, = (F- 3)/2F 

and to tl and fi by C, = /3/c? 6 
fourth-order dimensionless moment of P 6U 
probability density function of the 
variable X 60 
conditional dissipation rate of 60 
conditional diffusion rate of 60 
separation. 

in our present model 

&x)/&x = - YX 
boundary layer thickness 
velocity increment 
fSU(r) = U(v+x)- U(x) 
temperature increment 
M(r) = Q(r+x)-O(x) 
mean dissipation rate 
Kolmogorov length scale 

Greek symbols 
a, p in our present model Q(X)/px = a+ flX* 

with cc+p = 1 

117 cut-off variable 

X normalized fluctuations of 
temperature increment. 

and where () represents a statistical averaging. 
Assuming the existence of a quasistationary asymp- 

totic stage, VDR generalizes the results of Pope and 
Ching [14], which predict, in a stationary regime, the 
shape of the pdf as a function of two conditional 
averages R and Q defined by relations (lb) and (2b). 
Indeed, an identification of equations (la) and (2a) 
yields Pope and Ching’s result : 

P(X> 0 = Aexp [/#dX]. (3) 
Q(x, 4 

Then, a quasistationarity hypothesis [12] implies the 
following simple form for the conditional expectation 

R(x> 0 : 

R(x> 0 -= -x. 
EX 

(4) 

This specific linear function was also proposed by 
Ching [17] and by Pope and Ching [14]. Then, on the 
basis of numerical works [18], and also because of 
experimental evidences, the following parabolic shape 
is proposed for Q(X, t) : 

Q(xt 0 _ 1+c,x* 

EX l+C* . (5) 

When multiplying one or the other of equations (la) 
and (2a) by X2”, an equation linking the (2n)th-order 
moment to the (2n - 2)th moment is obtained : 

dTI” *n-2 ‘8 
__ = -2n.(2n-l)ll_x 

dt EX 
f2n.p. (6a) 

It is then possible to link the coefficient C2 through 
equation (6a), written for the fourth-order moment, 
to the flatness factor in the following manner : 

F-3 
C,==. (6b) 

Let us specify here that normalization conditions 
applied to the function Q and to the zeroth- and 
second-order moments of the pdf, imply that the slope 
of R is equal to - 1, and that the sum of the coefficients 
(l/( 1 + CJ) and (C,/( 1 + C,)) is equal to 1. Therefore, 
VDR calculates the shapes of the pdfs where the flat- 
ness factor F is a parameter : 

for 1 < F < 3 

P(x, t) = F-l 
& 

3-F 3/2 
.~ 

( > 2F 

forF= 3 

for F > 3 

9-SF 

x(l+$$3x*)- (7) 

where I- is the Euler function of the second kind. 
The main goal of our work is to extend this model 

to temperature increments for which statistics are 
strongly non-Gaussian for small scales r, and for 
which we may think that the mixing process linked to 
vortex stretching may differ from a simple homo- 
geneous mixing. In particular, it is worth noticing 



Temperature increments in fully developed turbulence 2051 

that the advection term of the energy conservation 
equation, which couples the thermal and dynamical 
fields, does not cancel out any more from the analysis, 
as is the case when the scalar field (and not its 
increment) is considered [ 151. However, we will inves- 
tigate the relevance of this kind of modelling to the 
present stationary (case for which pdfs depend on the 
scale r. 

3. EXPERIMENTAL CONDITIONS 

Measurements <are performed in the turbulent 
boundary layer developed on the working section 
floor of a low-speed wind tunnel with a cross-section 
0.56 x 0.56 m2. The wall is heated from the beginning 
of the layer to a constant temperature in such a man- 
ner that the temperature is acting as a passive scalar. 
At the measuring station (x = 3.7 m), the free stream 
velocity is 12 m SC’, the boundary layer thickness is 
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6 = 62 mm, and the associated Reynolds number and 
Grashof number are, respectively, 50 000 and 350 000. 
At the position considered here (y’ = 310, i.e. 
y/S = 0.16), the Kolmogorov length-scale q is 0.13 
mm and the Reynolds number calculated with the 
Taylor micro-scale is about 180. 

Simultaneous longitudinal velocity and tem- 
perature measurements are performed with a pair of 
parallel etched-Wollaston wires : the upstream cold 
wire (Z- 1 mm, d = 0.6 pm; constant current, 
Z = 0.15 mA) is separated by a distance of 0.4 mm 
from the hot wire (I - 0.8 mm, d = 5 pm ; constant 
temperature, overheat of 0.7). The velocity and tem- 
perature increments are deduced from the temporal 
records by transforming a time-separation into a 
space-separation thanks to Taylor’s hypothesis. The 
robustness of these measurements to study the stat- 
istics of temperature increments, even at small separ- 
ation, has already been demonstrated [ 191: the homo- 

Fig. 1. Evolution of the measured and predicted pdfs P of temperature increments with the separation (a) 
r/q = 250; (b) r/q = 180; (c) r/q = 50; (d) r/q = 10. 
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geneous and isotropic nature of the flow is confirmed 
by this study. We know for instance that the inertial 
zone covers the range of scales from 30 n to 1.50 q. 
Notice that systematic tests have been necessary to 
obtain correct results for the smallest scales, for which 
the correlation coefficient between 6 U and 60 must be 
zero, because of isotropy. In particular, all noises, 
which maintain quite a strong correlation for the sep- 
arations smaller than 10 ye, have been minimized. The 
sampling frequency of 37.5 kHz satisfies the Shannon 
criterion and records of 5 12 000 points (or of double) 
have been analysed, assuring the good convergence of 
the different results reported hereafter. 

4. THE VDR MODEL AND ITS EXTENSION 
APPLIED TO TEMPERATURE INCREMENTS 

As presented by Ould-Rouis et al. [ 191, the flatness 
factors of 60 differ greatly from their Gaussian value 
for the scales corresponding to the inertial and dis- 
sipative zones (r/n < 150). Therefore, such exper- 
imental data seem to be particularly well adapted to 
test an extension of VDR model to temperature 
increments. Let us note, however, that the asymmetry 
of the pdf P will be neglected in the following as the 
theoretical predictions use vanishing odd moments. 
Figure 1 presents experimental pdfs measured for four 
values of the separation r. Each of these figures com- 
pares the experimental shape with the VDR model 
estimated with the experimental flatness F. For 
r/q = 250 or 180, i.e. when F does not deviate too 
much from 3, the theory reproduces in a satisfactory 
manner the features of the pdfs. As soon as the scale 
r is smaller than r/q = 100, the prediction deviates 
strongly from the measurements. Figure 2 shows that 
although these distributions possess the same flatness, 
their maxima differ strongly. In fact, a detailed analy- 
sis of the mathematical conditions imposed on the 
pdf, proves that the maxima predicted by VDR always 
remain lower than 0.5 for the considered experimental 

I.,~ 

0.3 

0.2 0 0 0 0 Q Experimental result 
- - ?? * ?? Model from Valino et al. 

1 10 
r/II 

100 1000 

Fig. 2. Evolution of the maxima of temperature increments 
pdfs with the separation r/q. 

flatness factor, whereas the experimental pdf maxima 
reach 0.75 at small scales. The origin of these dis- 
agreements comes, in part, from the model applied to 
the conditional expectations R(X) and Q(x). As shown 
in Fig. 3, the slope of the line R(x)/aX evolves as 
a function of the separation r/q, whereas the model 
predicts it should remain equal to - 1. Let us specify 
that this result is opposite to the findings of Ching 
[ 171 obtained in a Rayleigh-Benard convection exper- 
iment (the scalar is not passive in this case, at least for 
the largest scales) and where R(‘)/E~ stays close to a 
line of slope - 1, even at very small scales. We note, 
however, that in a statistical analysis of the results 
of a numerical simulation of the Lorenz model [14], 
R(x)/E* has a non-trivial shape quite different from a 
line of slope - 1. Therefore, our results obtained in a 
slightly heated turbulent boundary layer suggests that 
it is necessary to relax the condition on the slope 1/ of 
R, by letting it move with r/q. Guided by our exper- 
iments. we choose : 

R(X) 
~ = -749x 

EX 

Q(x) ___ = cc(r) +j(r)x’. 
&‘Y 

However, as explained in Section 2 the VDR model 
implies (because of normalization conditions of Q and 
of zeroth- and second-order moments) that : tc + /I = 1 
and y = a+ /I. Thus, we need a new and additional 
parameter to relax the condition y = 1. This new 
degree-of-freedom will come from the model applied 
to Q. As can be seen in Fig. 4, the conditional expec- 
tation Q possesses local maxima for large values of x, 
followed by a decrease towards zero for even larger 
values (this has also been confirmed by a private com- 
munication of Aider and Wesfreid [20]). We then pro- 
pose to model the function Q(x)/sX by the parabola 
c( + px”, but only inside the interval [ - 1 /r, 1 /r] and by 
the zero function outside this interval. In the same 
manner, all the functions and integrals will be con- 
sidered equal to zero outside the same interval. Figure 
5(a) shows the evolution with r of the coefficients a 
and /I. The coefficient c[ has been calculated by a least- 
square interpolation method applied to the exper- 
imental function Q(x)/E~ under the constraint 
c( + fi = 1. We note that the inverse calculation, with 
first the determination of j3 by interpolation and then 
deducing CI by normalization conditions, gives the 
same results. In the same manner, Fig. 5(b) shows the 
variation of the coefficient, y, which is calculated by a 
linear regression on the experimental functions 
R(x)/E~. Figure 6(a), (b) presents these evolutions vs 
the flatness factor and they are also compared to the 
predictions of the model. We observe that the model 
predictions deviate from the observations for small 
scales of turbulence, i.e. as soon as the flatness is 
significantly larger than 3. 
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Fig. 3. Evolution of the conditional expectations R for 
different separations r/q (notice that the scales in graphs are 
very different) : (a) r/q = 250; (b) r/q = 180; (c) r/q = 50; 

(d) r/q = 10. 

In order to take into account the strong evolution 
of pdfs vs the turbulence scales, we will relax the 
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Fig. 3-continued. 
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X 

Fig. 4. The function Q for different separations r/q. 

of the parameter T. Notice, however, that the previous 
model will be recovered when z tends towards zero. 

Using the exact result of Pope and Ching [ 141 [equa- 
tion (3)], and the models for the conditional expec- 
tations R(x)/E~ = --yx and Q(x)/eX = a+bx* on the 
reduced interval, it is possible to obtain an analytic 
form for the pdf P(x) in the range [ - I/T, l/z] : 

P(x) = s (9) 
2 “T(a+fiXi)-(i+$)dX’ 

0 

Unfortunately, the involved integral cannot be 
expressed as explicit analytical formula except for 
integer values of the exponent r//I. Therefore, approxi- 
mating r/P by Int(Y/P), where Int means the nearest 
integer of the experimental value y//I at the considered 

condition on the slope of the function R(X) by the use scale, we obtain the following analytical expressions 
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Fig. 5. Evolution of the coefficients CL and p of Q (a), and of 

the slope y of R (b), as a function of r/q. 

for P, where CC, /I, x and z are coefficients determined 
from the experiments and r//l is replaced by Int(Y//?) : 
for y/B odd, greater than 3 

with 

@I 1 .2 
- a = (ZF)@F-3) (Valino et al.) 
00000 a (e~t??-iments) 
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0.6- a 0 0 
II 
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Fig. 6. Evolution of the coefficients a and p of Q (a), and of 
the slope y of R (b), as a function of the flatness factor F. 

+ Al,,,- I 

A 
A+_$=1 and A,= n+ I 

for y//l even, greater than 4 

P(X) = 

(lob) 
with 

Ah = B andAl+, = - 
y-/3(1 +24 

Y 7-2P(l +i) Ai. 

In fact, the coefficients CI, /3, y and r are linked to- 
gether by the normalization conditions applied on P 
and on its moments. This is precisely what VDR 
applied in order to link the coefficients of their model 
to the flatness factors. In our case, a similar calculation 
on the second-order moment using the normalization 
condition of the pdf leads to : 
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for y//I odd, greater than 3 

for y//I even, greater than 4 
1 =0 (lla) 

k- 1/2Zy/~-2k 
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These expressions are quite untractable, but a par- 
ticular solution can be obtained for z = 0. It can be 
verified that the condition y = a + /I = 1 is recovered, 
and thus confirms the validity of our calculations. 
However, we are not able to close the problem with 
the use of flatness factors as done by VDR. The influ- 
ence of the parameter r on the pdf maxima is small. 
On the contrary, it acts strongly on the flatness value 
and it evolves from three times the rms value at large 
scales to eight times, at small scales. 

Expressions (10a) and (lob) allow the explicit cal- 
culation of the pdfs ; they are drawn on Fig. 7. It is 
easy to see that the agreement between the exper- 
imental and modelled results is good, as far as we 
neglect the asymmetry of the experimental pdfs. For 
very small scales, however, it can be seen that our 
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Fig. 7. Evolution of the predicted (new model) and experimental pdfs of temperature increments with the 
separation: (a) r/q = 250; (b) r/q = 180; (c) r/q = 50; (d) r/q = 10. 
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Fig. 8. Evolution of the maxima (a) and of the flatness 
(b) of the pdfs of temperature increments (experiments and 

models) with the separation r/q. 

model predicts too large maxima. This disagreement 
may result from a too naive approximation for the 
function R(X) which can present, for the smallest 
scales, a small wave in the vicinity of x = 0. A more 
sophisticated mode1 which could take into account a 
smaller slope of R at x = 0 would induce a better 
prediction for the pdf maxima. Note that these obser- 
vations are not surprising since the concerned small 
scales correspond to the dissipative zone of turbulence 
for which new transfer mechanisms are involved. 
Unfortunately, refining the function R(X) results 
in untractable analytical developments. However, 
Fig. 8 presents the evolution of the flatness factor and 
of the maxima of the pdf vs the scale r. Comparison 
with the results of the VDR model shows indeed the 
significant improvement resulting from our extended 
model. 

5. CONCLUSION 

We have shown in this study that the Valino et al. 
mode1 (VDR) [16] needs to be completed when it is 
no more used to study the temperature field, but its 
increments. We propose an extension which is able to 
correct some of the encountered disagreements. In 
particular, our analysis is based on the exact result of 
Pope and Ching [14] and on a proper estimation and 
modelling of the two conditional expectations R(X) 
and Q(x). In order to relax the very restrictive nor- 
malization conditions of the VDR model, two new 
parameters z and “/ are introduced. - l/r and l/7 are 
the boundaries of the support of the experimentally 
measured functions R(X), Q(x) and P(x) and y is the 
slope of the function R(X). Due to the complexity of 
the analytical calculations, we are not able (as it was 
done by VDR) to express the parameters of our model 
as explicit functions of the flatness factor. However, 
numerical estimations of the involved integrals permit 
to obtain new expressions for the pdfs of scalar 
increments which correctly predict the experimental 
trends as long as the considered turbulent scales are 
not too small (r/q > 20). 
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